Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving
نویسندگان
چکیده
A dramatic bradycardia is induced by underwater submersion in vertebrates. The location of parasympathetic preganglionic cardiac motor neurons driving this aspect of the diving response was investigated using cFos immunohistochemistry combined with retrograde transport of cholera toxin subunit B (CTB) to double-label neurons. After pericardial injections of CTB, trained rats voluntarily dove underwater, and their heart rates (HR) dropped immediately to 95 ± 2 bpm, an 80% reduction. After immunohistochemical processing, the vast majority of CTB labeled neurons were located in the reticular formation from the rostral cervical spinal cord to the facial motor nucleus, confirming previous studies. Labeled neurons caudal to the rostral ventrolateral medulla were usually spindle-shaped aligned along an oblique line running from the dorsal vagal nucleus to the ventrolateral reticular formation, while those more rostrally were multipolar with extended dendrites. Nine percent of retrogradely-labeled neurons were positive for both cFos and CTB after diving and 74% of these were found rostral to the obex. CTB also was transported transganglionically in primary afferent fibers, resulting in large granular deposits in dorsolateral, ventrolateral, and commissural subnuclei of the nucleus tractus solitarii (NTS) and finer deposits in lamina I and IV-V of the trigeminocervical complex. The overlap of parasympathetic preganglionic cardiac motor neurons activated by diving with those activated by baro- and chemoreceptors in the rostral ventrolateral medulla is discussed. Thus, the profound bradycardia seen with underwater submersion reinforces the notion that the mammalian diving response is the most powerful autonomic reflex known.
منابع مشابه
The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation.
The distribution of preganglionic motoneurons supplying the ciliary ganglion in the cat was defined both qualitatively and quantitatively. These cells were retrogradely labeled directly, following injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the ciliary ganglion, or were transsynaptically labeled following injections of WGA into the vitreous chamber. A...
متن کاملProcessing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis.
Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmission in vivo are poorly understood. We have employed a novel approach allowing intracellular recordings from functionall...
متن کاملActivation of Brainstem Neurons by Underwater Diving in the Rat
The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardior...
متن کاملThe cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats.
The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to div...
متن کاملAutonomic nervous control of heart rate in muskrats during exercise in air and under water.
Neural control of the cardiac responses to exercise in air (running) and under water (diving) was studied in the muskrat (Ondatra zibethicus) by means of acute pharmacological blockade with the muscarinic blocker atropine and the beta-adrenergic blocker nadolol. Saline injection was used as a control. Controls running on a treadmill showed a marked increase in heart rate with exercise. Atropine...
متن کامل